If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10v^2-240v=0
a = 10; b = -240; c = 0;
Δ = b2-4ac
Δ = -2402-4·10·0
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{57600}=240$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-240}{2*10}=\frac{0}{20} =0 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+240}{2*10}=\frac{480}{20} =24 $
| 7T-4=10t×14 | | 10x-4+x-14=180 | | 5y-12=4y+6 | | 13b-8=-b-14 | | 1/3x-1/4=36+x | | -8(3-x)=4/5(x-33) | | 40k^2-7k=0 | | 11+15v=-7+3v | | 9g-6g=6 | | 4b=b+12 | | 13=r/98 | | 6y+2y-8y+4y+1=7 | | -32-12x=112 | | 128=4^3x | | 8(3-x)=4/5(x+33) | | U+12=3u | | 94=23+m+14 | | 6(8g(2)+2)+45=153 | | 5(w+1)=5 | | 6f^2-3/2f+1/12=0 | | -7x-7=28x-7(5x-7) | | 32z^2+80z+50=0 | | 10x-5x+x-x+x+1=7 | | 8y^2-2y=1 | | 4z^2+19z-12=0 | | 14v=27+5v | | 2v+15=19 | | 18u-45=9u | | 4t^2-t-60=0 | | 5m-(6m+9=53 | | -4(7x10)=-2(14x+20) | | 4u+7=31 |